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ABSTRACT
While most of the current work has been focused on developing
adaptive techniques to respond to human-initiated inputs (what be-
haviour to perform), very few of them have explored how to proac-
tively initiate an interaction (when to perform a given behaviour).
The selection of the proper action, its timing and confidence are
essential features for the success of proactive behaviour, especially
in collaborative and assistive contexts. In this work, we present
the initial phase towards the deployment of a robotic system that
will be capable of learning what, when, and with what confidence
to provide assistance to users playing a sequential memory game.

CCS CONCEPTS
• Human-centered computing → User centered design; User
studies; User models.
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1 INTRODUCTION
Socially assistive robots aim to improve the quality of life of their
users through social interactions [11, 16] which implies that the
interaction is focused on the users to help them to achieve spe-
cific goals. Perceiving the user’s needs and intentions and acting
proactively are fundamental to social interaction.

With respect to learning what behaviour the robot shall per-
form according to the user’s preferences and needs, most of the
research in the field has aimed at solving this problem by employing
different AI methodologies: symbolic task planning [2], Bayesian
Network (BN) [17], Reinforcement Learning (RL) [5], and Inverse
Reinforcement Learning (IRL) [1], among others. Nonetheless, such
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Figure 1: Illustration of the learning pipeline in three phases.
Note that DGD is the questionnaire we use to assess the
player’s profile.

approaches result in robots that learn only to react to humans’
actions or to given events. In the real world, robots are also re-
quired to proactively take the initiative [18]. They need to identify
the requirements of a situation and gather information to decide
what, but also when to perform a given action in an anticipatory
way. Indeed, time plays a crucial role in the quality of collaborative
tasks [8]. If a robot intervenes when it is not needed, it can nega-
tively impact the interaction, especially trust [12]. And so, if the
system does not intervene when the human expects it to take an
action, their engagement might wipe off over time [9].

To address this issue, in recent years, researchers have started
exploring new techniques for making robots proactive. Nonethe-
less, most of the approaches have focused on learning the levels
of proactivity of the robot, which is controlled in a Wizard-of-Oz
(WoZ) fashion ([10, 15, 19]). On the other hand, very few have fo-
cused on developing AI reasoning capabilities to learn the correct
timing for robot behaviour [4, 6, 7]. Moreover, none of the previ-
ous approaches proposed a computational approach to learn the
proactivity directly from humans.

We focus on defining a computational approach that can be
used for learning (i) when humans require assistance and (ii) how
confidently the robot should take control and intervene. Such a
framework is tested on a sequential memory task. Here, we de-
vised a learning pipeline consisting of three main phases, aiming at
learning an Influence Diagram (ID) [14] that fits the participant’s
assistive needs (see Fig. 1). In the first phase, namely, Learning to
be Proactive, we request participants to play alone with the possi-
bility of asking for assistance when necessary. In the second phase,
namely, Learning to be Proactive with Confidence, participants play
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Figure 2: Example of game sequence of 4 icons: the sequence
shown to the user (top), the sequence requested to repeat to
the user after 5 secs (bottom).

with the assistance of a proactive virtual-screen robot trained with
the data collected in the previous phase. At this point, we learn
how confident the robot is in offering assistance. Finally, in the
third phase, namely, Proactive Robot with Confidence, we endow the
Furhat robot with the model fine-tuned in the second phase, aiming
to assess whether and to what extent the proactivity has an impact
on participants’ acceptability and performance.

In this work, we present the details of the first phase (see Fig. 1),
describing the preliminary results.

2 PHASE 1: LEARNING TO BE PROACTIVE
2.1 Methodology
The objective of this first phase was to learn both the reactive be-
haviour of the robot, that is, what assistive action to offer, and the
timing at which such assistance needs to be provided. Towards
such a goal, we designed an experimental study in which partic-
ipants were requested to play a sequential memory game with
increasing levels of difficulty (Fig. 2). Participants were told to play
the game with the assistance of a virtual robot that was introduced
as a peer from whom they could seek help if necessary. Hence,
when requested, the robot could then unlock one of the degrees of
assistance available in that state. According to [10], this strategy is
referred to as a “low level of proactivity” where the user can only
explicitly request help. Specifically, the user could click on the robot
icon to unlock suggestions and decide when and what to apply.

To avoid a one-size-fits-all policy for all the participants, we pro-
filed them by using theDemographic GameDesignmodel (DGD) [3].
In this way, we could learn the proactive robot behaviour that best
fits a given player’s profile.

2.2 Assistive Task
The task was a sequential memory game in which, for each level,
the participant was requested to remember a sequence of random
icons (e.g., anchor, bicycle, cloud, sun) and repeated them in the
correct order. The sequence of icons was shown for 5 seconds,
after that cards were flipped and the participant was requested to

compose the entire sequence. The next level was accessible only if
the current one was completed.

At any time, the participant could decide to end the game in order
to avoid experiencing negative feelings, such as discouragement or
frustration, in the case of non-completion.

The goal of the game was to pass as many levels as possible
while trying to minimise the number of mistakes and requests
for assistance. Points were assigned depending on whether the
participant placed the correct card (+10 correct card / -5 wrong
card) and on the assistance requested (See Sec. 2.3). Each level had a
different number of cards to remember and a different deck of cards
to choose from. Regarding the number of cards in the sequence to
remember, it ranged from 4 up to 7, according to Miller’s Law [13]
which stated that the number of objects an average human mind
can remember while running is 7 ± 2. Concerning the deck of
cards, they ranged from 4 up to 15 cards.

2.3 Assistive Behaviour
We defined four degrees of assistance that the participant could
request (see Fig. 3):

• Hide Card (-1 point), allows for the temporary removal of a
card from those to be selected;

• Suggest Position (-2 points), allows for the temporary removal
of cards to the right or left of those to be chosen;

• Indicate Position (-3 points), allows for the temporary removal
of all the cards except the correct one;

• Review Sequence (-4 points), allows one to review the entire
sequence of cards for 5 seconds.

2.4 Procedure
For the online experimentation, we developed a website1 with
Flask2 and hosted it on PythonAnywhere3 for free. Before starting
to play the game, a tutorial with game instructions about how to
score points and request assistance was shown. Next, the partici-
pant was offered the possibility to try the game, with up to three
levels. After the user agreed to participate, they were asked to first
fill out a demographic questionnaire about age, gender, and level
of education, and then the DGD questionnaire. Finally, the user
could start playing the game. After passing a level, the player was
provided with their current score and ranking position with respect
to the others in order to keep them engaged. The game ended in
two cases: when the user pressed the end button or when they
achieved the maximum level.

2.5 Evaluation Measures
Concerning subjective measures, the DGD Questionnaire was used
to profile the participants. The questionnaire provides four non-
exclusive types of players (i.e., Conqueror, Manager, Wanderer, and
Participant).

Concerning the objective measures, the highest level achieved
in the game and the total score were considered the participant’s
performance. Furthermore, the number of mistakes and hints re-
quested were included as dimensions to classify the user’s playing
1http://qcdeveloper.pythonanywhere.com/
2http://flask.pocoo.org/
3https://www.pythonanywhere.com/
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(a) Hide card (-1 point) (b) Suggest position (-2 points) (c) Indicate position (-3 points)

Figure 3: Examples of the assistance provided by the virtual robot

Figure 4: Average values for each profile of the following discriminative variables: a) Level achieved b) Score c) Mistakes and d)
requested Helps.

style. In order to evaluate when the user requested a hint, we cal-
culated the “help time” which is the time difference between the
request for help and the previous action. Finally, to evaluate what
hints were requested, we calculated the number of occurrences of
each of them.

3 PRELIMINARY RESULTS
We divided the participants into four groups based on the DGD
questionnaire. However, some participants might belong to more
than one class; hence, the results presented in this section involve
statistics with repeating players. From those, we excluded those
participants who did not achieve level 10, which was the first with
7 cards to remember and 7 cards in the deck. The data of 83 partici-
pants were analysed, 45 of whom belong to the Conqueror class,
20 to the Manager, 9 to the Wanderer, and finally 9 to the Par-
ticipant. For each class, we identified the following discriminative
variables: number of levels achieved, score, number of mistakes, and
assistance requested (See Fig. 4).

From the results, it emerged that the Conqueror played longer
on average and got the highest score, asking for more help than
others with the result of making fewer mistakes. On the other hand,
the Manager asked for less assistance and consequently made more
mistakes, lowering the total score. Given the smaller number of
participants belonging to the Wanderer and Participant classes,
we could not find any relevant differences in the data. However,
when we consider the what, that is, the degree of assistance that
participants requested during the game (see Fig. 5), we can notice
how participants who belonged to the Participants class switched
almost equally between “Hide card" and “Review sequence" while
the others requested the maximum level of assistance most of the
time. It is noteworthy to observe that a kind of pattern in the
selection of the degrees of assistance could be inferred.

We speculated that Conquerors were those who challenged them-
selves to finish the game or at least achieve the maximum level
according to their capacity. Indeed, they asked for the amount of
help they needed to pass to the next level and keep their score higher.

Figure 5: Probability of what level of assistance for each
profile was request.

On the other hand, the Manager seemed to prefer the highest level
of assistance only when they started to make several mistakes in a
row. Their strategy did not pay in terms of score, and they ended
up with a score quite far from those belonging to the Conqueror.
Concerning the Wanderer, it can be observed that the strategies for
requiring assistance were different. Lower levels were requested,
not incrementally as for the Conqueror and Manager, and the high-
est level was requested to avoid losing the game and moving on
to the next level. Finally, for those belonging to the Participant
class, we can hypothesise that they did not use the assistance for
getting to the next level, on the contrary, they seemed to play for
the sake of enjoying the game. Indeed, most of the participants who
belonged to the Participant class were those who requested less
assistance, committed more mistakes, and ended up finishing the
game before the minimum level.

With respect to the time they requested help, we can notice
some interesting patterns (see Fig. 6). Indeed, the participants who
belonged to the Conquer profile, on average, waited for the longest
before requesting help. A similar pattern can be observed for those
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belonging to the Manager profile. However, in this case, their tim-
ings were slightly lower than those of the Conqueror. Contrar-
ily, those who belonged to the Participant and Wanderer profiles
showed a completely different pattern. Indeed, they seemed not to
hesitate when they requested the “Hide Card” and “Indicate Posi-
tion” helps, while for the “Suggest Position” and “Review Sequence”
they delayed a bit more their request.

Figure 6: Average time (s) for each profile to request a given
level of assistance.

These results confirm our main idea of profiling the participants
according to the DGD questionnaire. Indeed, we could observe
different patterns for the four classes in terms of “what” assistance
(see Fig. 5) and “when” it was requested (see Fig. 6).

4 NEXT STEPS
With the data collected in the first phase, we have built an ID
whereby the system can learn at what moment it is more likely to
provide a given degree of assistance. The ID will be used in phases
2 and 3. Note that the initial classes returned by the DGD question-
naire might be increased to consider the intra-classes relationship
(e.g., a person might be both a Conquer and a Manager). In the
following, we describe how we envision the next two phases.

4.1 Phase 2: Learning to be Proactive with
Confidence

In the second phase, the goal is to learn the level of confidence by
means of which the robot will take control of the task. According
to [10], we defined four increasing levels: None, in which subjects
could only explicitly request help Notification, in which the user is
informed of a solution Tip, in which a solution is directly suggested
to the user Action, in which the system selects an option for the
user. Note that the None level has already been trained in the first
phase, in which participants could request assistance when they
needed it. Here, we focus on the remaining three levels. As in the
first phase, participants will be assisted by a virtual robot, which,
according to the ID model of the class they belong to, will propose
the action of assistance that best fits their needs. Aiming to train
the level of confidence, the robot would suggest the action with a
random confidence level, and the responses of participants would
be recorded. In this way, we extend our ID, which will return not
only what action to take and when to take it, but also with what
confidence to recommend it to the user.

4.2 Phase 3: Proactive Robot with Confidence
In the last phase, we aim at assessing whether a proactive robot
would have an impact on participants’ performance, trust, and
overall experience. To do so, we will endow a Furhat robot with
proactive capabilities based on the ID trained in the first two phases.
Specifically, each participant will be profiled with the DGD and
requested to play with the robot endowed with an ID that reflects
their profile.

5 ACKNOWLEDGMENT
This project was partially funded by the European Union’s Hori-
zon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 801342 (Tecniospring IN-
DUSTRY), by the Italian MUR and by the European Union under
the CHIST-ERA project COHERENT (PCI2020-120718-2).

REFERENCES
[1] Antonio Andriella, Carme Torras, Carla Abdelnour, and Guillem Alenyà. 2022.

Introducing CARESSER: A framework for in situ learning robot social assistance
from expert knowledge and demonstrations. User Modeling and User-Adapted
Interaction (2022).

[2] Antonio Andriella, Carme Torras, and Guillem Alenyà. 2020. Cognitive Sys-
tem Framework for Brain-Training Exercise based on Human-Robot Interaction.
Cognitive Computation (2020).

[3] Chris Bateman and Richard Boon. 2005. 21st Century Game Design (game devel-
opment series). Charles River Media, Inc.

[4] Sera Buyukgoz, Jasmin Grosinger, Mohamed Chetouani, and Alessandro Saffiotti.
2022. Twoways to make your robot proactive: Reasoning about human intentions
or reasoning about possible futures. Frontiers in Robotics and AI 9 (2022).

[5] Caitlyn Clabaugh, Kartik Mahajan, Shomik Jain, Roxanna Pakkar, David Becerra,
Zhonghao Shi, Eric Deng, Rhianna Lee, Gisele Ragusa, and Maja Matarić. 2019.
Long-Term Personalization of an In-Home Socially Assistive Robot for Children
With Autism Spectrum Disorders. Frontiers in Robotics and AI 6 (2019).

[6] Anaís Garrell, Michael Villamizar, Francesc Moreno-Noguer, and Alberto Sanfeliu.
2017. Teaching Robot’s Proactive Behavior Using Human Assistance. Interna-
tional Journal of Social Robotics 9 (04 2017).

[7] Jasmin Grosinger, Federico Pecora, and Alessandro Saffiotti. 2016. Making Robots
Proactive through Equilibrium Maintenance. In Twenty-Fifth International Joint
Conference on Artificial Intelligence (IJCAI).

[8] Guy Hoffman, Maya Cakmak, and Crystal Chao. 2014. Timing in human-robot
interaction. In Proceedings of the 2014 ACM/IEEE international conference on
Human-robot interaction. 509–510.

[9] Bahar Irfan, Aditi Ramachandran, Samuel Spaulding, Dylan F. Glas, Iolanda
Leite, and Kheng Lee Koay. 2019. Personalization in Long-Term Human-Robot
Interaction. In 2019 14th ACM/IEEE International Conference on Human-Robot
Interaction (HRI). 685–686.

[10] Matthias Kraus, Nicolas Wagner, and Wolfgang Minker. 2020. Effects of Proactive
Dialogue Strategies on Human-Computer Trust. In Proceedings of the 28th ACM
Conference on UserModeling, Adaptation and Personalization (UMAP ’20). 107–116.

[11] Gianpaolo Maggi, Elena Dell’Aquila, Ilenia Cucciniello, and Silvia Rossi.
2021. “Don’t Get Distracted!”: The Role of Social Robots’Interaction Style on
Users’Cognitive Performance, Acceptance, and Non-Compliant Behavior. Inter-
national Journal of Social Robotics 13, 8 (2021), 2057–2069.

[12] Daniel C McFarlane and Kara A Latorella. 2002. The scope and importance of
human interruption in human-computer interaction design. Human-Computer
Interaction 17, 1 (2002), 1–61.

[13] George Armitage Miller. 1956. The magical number seven, plus or minus two:
Some limits on our capacity for processing information. Psychological review 63,
2 (1956), 81.

[14] Zdzisław Pawlak. 2004. Decision Networks. In Rough Sets and Current Trends in
Computing. Springer Berlin Heidelberg, 1–7.

[15] Zhenhui Peng, Yunhwan Kwon, Jiaan Lu, Ziming Wu, and Xiaojuan Ma. 2019.
Design and Evaluation of Service Robot’s Proactivity in Decision-Making Support
Process. In Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems (CHI ’19). 1–13.

[16] Silvia Rossi, Marwa Larafa, andMartina Ruocco. 2020. Emotional and Behavioural
Distraction by a Social Robot for Children Anxiety Reduction During Vaccination.
International Journal of Social Robotics 12 (2020), 765–777.

[17] Thorsten Schodde, Kirsten Bergmann, and Stefan Kopp. 2017. Adaptive Ro-
bot Language Tutoring Based on Bayesian Knowledge Tracing and Predictive

524



Towards a Computational Approach for Proactive Robot Behaviour in Assistive Tasks HRI ’23 Companion, March 13–16, 2023, Stockholm, Sweden

Decision-Making. In Proceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction (HRI ’17). 128–136.

[18] Chapa Sirithunge, AG Buddhika P Jayasekara, and DP Chandima. 2019. Proactive
robots with the perception of nonverbal human behavior: A review. IEEE Access
7 (2019), 77308–77327.

[19] Hao Tan, Ying Zhao, Shiyan Li, Wei Wang, Ming Zhu, Jie Hong, and Xiang
Yuan. 2020. Relationship between social robot proactive behavior and the human
perception of anthropomorphic attributes. Advanced Robotics 34, 20 (2020), 1324–
1336.

525


	Abstract
	1 Introduction
	2 Phase 1: Learning to be Proactive
	2.1 Methodology
	2.2 Assistive Task
	2.3 Assistive Behaviour
	2.4 Procedure
	2.5 Evaluation Measures

	3 Preliminary Results
	4 Next Steps
	4.1 Phase 2: Learning to be Proactive with Confidence
	4.2 Phase 3: Proactive Robot with Confidence

	5 Acknowledgment
	References



